CHAPTER 6.1

Mineral Sorting

Bern Klein and Andrew Bamber

Over the past 40 years, society has put increasing demand on
industries to move toward cleaner and more efficient means of
production. Industry has generally responded with improved
processes and significant increases in efficiency and envi-
ronmental performance. Over the same period, mining has
become a point of focus for governments, nongovernmental
organizations (NGOs), and communities as an industry out of
tune with this trend. High-grade and easily accessible deposits
have become largely depleted, and a large proportion of the
remaining deposits are found in either remote locations or at
extreme depths or embody other complications such as poor
ground conditions, complex structure, adverse mineralogy, or
presence of deleterious elements. The grade of new discov-
eries is declining severely, as is the mined grade at existing
operations across most commodities. The general response to
this situation is that most companies simply exploit economy
of scale to dilute the fixed cost at operations, leading to the
prevalence of ever-larger underground and open pit mines
(Scoble 1994). Large-scale mining approaches, while improv-
ing economics by reducing the contribution of fixed costs and
overhead, often incorporate high levels of unit inefficiency,
particularly as extraction methods have inherently low levels
of selectivity, leading to significant dilution as well as losses.
Furthermore, beneficiation processes, particularly grinding,
are singularly inefficient; hence, impacts on the efficiency of
treating ores with lower grindability, as well as lower value,
are particularly acute (Klein et al. 2015). Cost-effectively
maximizing the amount of ore extracted while simultane-
ously reducing the waste content in ore delivered to down-
stream processes (whether simply transport and crushing or
more sophisticated circuits, such as grinding and flotation or
leaching) is therefore of key interest for all mining operations
and projects struggling with low margins (Scoble et al. 2003;
Bamber 2012).

Interest in the preconcentration of ore ahead of transpor-
tation and milling, as one way to achieve this, has historically
been high. Preconcentration of mined material before it enters
the mill reduces waste content and increases the value of ore,
reducing overall processing cost (Scoble et al. 2003; Bamber

et al. 2005, 2008; Engelbrecht 2012; Robben et al. 2013;
Lessard et al. 2014). It may also assist in reducing the capacity
required of all downstream processes, including transportation
and milling, to deliver equivalent economics (Bamber et al.
2004; Bamber 2008). According to Salter and Wyatt (1991),
sorting of ore also helps in providing a more uniform quality
feed to the mill, which leads to further improvements in met-
allurgical recovery. Sensor-based sorting supports efforts to
address pressures to transform the mining industry to become
safer through mechanization, to improve overall energy effi-
ciency by reducing transport requirements and diverting waste
away from comminution, and to become more productive by
maximizing resource utilization (Egerton 2004; Klein et al.
2011; Nadolski et al. 2015; Duffy et al. 2015).

There are various benefits to applying sorting in mining,
and the best results are observed when it is introduced at very
early stages in the mining cycle, potentially as early as the
bench or face (Klein et al. 2002; Bamber et al. 2004; Bamber
2008). While several methods of preconcentration are avail-
able, including classification by size or density, sorting possi-
bly offers the most potential of all because of its applicability
to a wider range of mineralogies and its water- and reagent-
free operation benefits.

Electronic sorting of minerals has been commercially
available on a small scale since World War II. Early appli-
cations were in industrial minerals and more recently, with
uranium, gold, diamonds, and massive base metal sulfides.
Sensor-based sorting involves the sensing of the quality of
granular materials such that the sensor response informs a
decision to accept or reject the material. The technology,
however, has not been adopted as widely as may be possi-
ble for several reasons. These include the traditionally low
processing capacity of the technology, resulting in high unit
capital and operating costs, limitations on the range of par-
ticle sizes that can be treated, as well as pervasive misconcep-
tions about the principles and benefits of sorting among mine
operators (Arvidson 2002; Manouchehri 2003; Bergmann
2009; Wotruba 2006; Wotruba and Harbeck 2010). Lack of
awareness about what constitutes an opportunity for sorting
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Figure 1 Typical particle sorting system showing sensors and pneumatic diverters

and ignorance of indicators of amenability to sorting has also
been a barrier (Klein et al. 2015). However, recent develop-
ments in sensor-based sorting, including an increase in the
range of applicable sensors, advances in speed, as well as
new concepts in bulk- and semi-bulk sorting, have stimulated
renewed interest in this unit operation within the industry
(Kleiv 2012; Duffy et al. 2015; Bamber et al. 2016). These
advances in capacity and range of application suggest that
sorting, with its relatively low capital and operating cost,
should be considered where good metallurgical response has
been indicated, as either a possible final treatment step (in the
case of bulk commodities) or a preconcentration step ahead
of conventional grinding and flotation or leaching (in the case
of base and precious metals).

This chapter seeks to present the current state of sensor-
based sorting, the range of sensors, tools for the mineral pro-
cessor to identify opportunities to sort, approaches to char-
acterize materials for sorting, selection criteria pertaining to
the unit operation, circuit designs, capital and operating cost
considerations, as well as a range of example applications.

SORTING SYSTEMS

In sensor-based sorting, sensor information is acquired for a
material. This information is used in an algorithm to classify
the material, for example, according to its value or the con-
centration of a particular contaminant. Based on the estimated
value and comparison of that value to a relevant threshold, the
microprocessor informs a mechanical actuator to either accept
or reject the material. Sorting can be applied to individual par-
ticles (rocks), bulk streams, or batches of material.

Particle Sorting

Sorting has application for a range of deposit types with grades
varying from very low to high. For low-throughput high-value
operations, particle (rock) sorting can add significant value
to the operation by rejecting significant quantities of barren
or low-grade waste ahead of more cost- and energy-intensive
processes such as grinding (Bamber et al. 2008). In this case,
the impact of sorting increases with decreasing grade, because

at lower grades, such ore has a greater proportion of waste that
can be rejected.

For particle sorting, the material must be prepared
through a series of crushing and screening stages to prepare
narrowly bounded size fractions, typically 3:1 top-size-to-
bottom-size range. Often, washing via sprays or wet screening
1s needed to clean the particle surfaces for accurate sensing.
The sorting systems require feeders that produce a monolayer
of spaced particles so that each particle can be sensed and
sorted individually.

The most common sorting system involves a belt con-
veyor, a sensing system to assess the quality of conveyed mate-
rial, and ejectors consisting of valves delivering compressed
air to eject detected waste particles, as shown in Figure 1.
Alternative systems sense the rocks while free falling, inform-
ing either pneumatic or mechanical deflectors to reject the
rock (Figure 2). Sensors used for particle sorting can either
detect properties on the surface or assess bulk composition.
For some mineralogies, the disposition of surface properties
adequately represents the bulk, therefore surface measurement
will suffice. This is not true, however, in all cases. Sensing
accuracy can be improved by using multiple sensors in differ-
ent orientations and/or combining responses from more than
one type of sensor.

Bulk Sorting

The trend in the mining industry is to mine larger and lower-
grade deposits to take advantage of economies of scale. While
the throughput of current particle sorters at less than a few
hundred metric tons per hour generally prohibits their deploy-
ment in such applications, bulk sorting solutions overcome
throughput limitations by incorporating sensor systems into
the material handling equipment of the mine. While less
selective, and delivering generally lower-yield results than
rock sorting, bulk sorting has very low cost intensity, and
where heterogeneity in the ore is present at a relevant length
scale, it can be very eftective at delivering increased value.
An increasingly wide range of sensors that integrate into con-
veying equipment, haulage equipment, and more recently into
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Figure 2 Vibrating feeder system with sensors on falling
material and mechanical diversion

Source: Bamber et al. 2016
Figure 3 ShovelSense shovel-based bulk sorting solution
at a Cu-Au mine

loading assets (e.g., mining shovels) is now available to sup-
port bulk sorting options where these did not previously exist.

Bulk separation has not been widely contemplated as a
method, except in specific situations. For example, LKAB (a
Swedish mining company) uses laser-induced fluorescence
(LIF) for bulk sorting (Kruukka and Briocher 2002). Recent
work, however, indicates that a wide potential for the appli-
cation exists, therefore bulk sorting, whether on shovel (i.e.,
bulk-batch sorting) or on belt (bulk or semi-bulk sorting) has
a key role to play in ore upgrading, particularly at large-scale
open pit and underground mines (Murphy et al. 2012; Duffy et
al. 2015; Bamber et al. 2016). Real-time bulk sensing systems
can be deployed in several ways: Sensing can simply be used
to help mines better execute grade control, or it can provide

Source: Nield 2002

Figure 4 Overhead scintillometers (left] used for scanning
U,Og-bearing trucks (right) at Rossing uranium mine in
Namibia

Figre 5 Bulk diversion of nickel laterites via X-ray
fluorescence analysis to product stockpile (right) and waste
stockpile (left)

feed-forward process control information to the flotation or
leach plant. Integrated with material routing or other diversion
systems, material can be physically upgraded, either by reject-
ing waste or, more importantly, by recovering high-grade ore
that would otherwise have been left in situ or sent to the waste
dump. Sensors integrated with loading assets, such as shovels,
scoops, backhoes, and loaders, sense the material during load-
ing and can support sorting decisions at the bucket or dipper
(i.e., 10-50-t scale; Figure 3).

Sensors integrated with hauling assets, such as trucks, can
detect material in transit and support sorting decisions at the
truck, for example, on a 300-t scale (Nield 2002; Figure 4).
Sensing system deployment for sorting on shovels and trucks
can improve the precision, accuracy, and resolution in the
routing of material to low-grade stockpiles, leaching heaps,
concentrators, or waste dumps.

Sensors installed on belt conveyors with integrated
diverters can sense the conveyed material, supporting sorting
decisions at a higher resolution than the truck or shovel scales,
ranging from metric tons to hundreds of kilograms (Figure 5,
Duffy et al. 2015). Probably the best cited example of this type
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Figure 6 Theoretical potential for analysis using different bands of the electromagnetic spectrum

of sorting is the application of LIF in the bulk sorting of high-
phosphorous Fe from low-phosphorous Fe at LKAB iron ore
mine in Kiruna, Sweden (Kruukka and Briocher 2002).

MINERAL SENSING TECHNOLOGIES

Most sensors belong to a general class of electromagnetic
source—detector combinations, where some form of stimulation
using a particular band of the electromagnetic spectrum is used,
and the response to that stimulation is recorded by the detec-
tor. A summary of the electromagnetic spectrum and its level of
interaction with physical materials is shown in Figure 6.

The most common sensor techniques currently used in
the industry are optical, conductivity, medium-wave infrared,
and X-ray (X-ray transmission [XRT] or X-ray fluorescence
[XRF]). Rapidly emerging sensing methods include prompt
gamma neutron activation, laser-induced breakdown spectros-
copy (LIBS), as well as multispectral reflectance imaging.

A list of sensors that are applicable to ore sorting is pre-
sented in Table 1. The sensors can be divided into two broad
classes: those that measure properties volumetrically and those
that measure surface characteristics only. In general, using a
volumetric property to correlate to metal content provides a
higher degree of confidence for sorting. For many ores, and
particularly in bulk and semi-bulk situations, measuring only
surface characteristics can accurately represent the volume
characteristic. Sensors also classify according to response type.
For example, analytical systems such as XRF or prompt gamma
neutron activation analysis (PGNAA) can give a direct mea-
surement of elemental composition, whereas electromagnetic
or reflectance-based systems can give only a proxy for material
composition. Furthermore, electromagnetic approaches require
preexisting conductivity or magnetic susceptibility to be pres-
ent, whereas other methods, such as PGNAA, have no such

prerequisite. There is no general case or rule, however, and it is
therefore highly recommended to test the suitability of sensors
for each ore type to be sorted (Klein et al. 2002; Fickling 2011;
Tong 2012; Altun et al. 2014).

Light-Based Techniques
Light-based techniques are divided into two main categories
referred to as photometric and hyperspectral.

Photometric

The most widely known method in mineral sorting is optical
sorting. There are many subclasses of photometric sorters,
including those that sense visible or near-visible spectrum,
minerals that naturally fluoresce under ultraviolet (UV)
light, and hyperspectral sensing systems that detect over the
visible to shortwave infrared wavelengths.

Visible and near-visible spectrum. Sensors are fun-
damentally cameras or charge-coupled device (CCD) sen-
sors capturing reflectance phenomena from mineral particles,
batches, or flows illuminated by visible wavelengths of light
(Figure 7).

Interpretation can be simple, such as aggregate red-green-
blue color intensity, or more sophisticated methods can be
used, such as image analysis that characterizes texture.
Alternate methods of illumination such as UV or near-
infrared, coupled with very similar CCD detectors, give capa-
bility for characterization and, ultimately, sorting at those
wavelengths instead.

Natural fluorescence. Many minerals, such as scheelite
and wolframite, are naturally fluorescent under UV lighting
conditions and can be sorted, based on responses in the fluo-
rescent spectrum, from non-fluorescing species such as quartz
or magnesium aluminosilicates.
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Surface
Technology Physical Property | Principle or Volume Ore Types Sorting Applications | Manufacturer*
Radiometric Natural gamma Radioactivity Volume Uranium, Particle and bulk TOMRA, Rados
(scintillometer) radiation level Witwatersrand gold
ores
Prompt gamma neutron | Elemental Neutron activation/ Volume Iron ore Bulk Scantec,
activation analysis composition gamma energy ThermoFisher,
[PGNAA), pulsed emission PANalytical
fast thermal neutron
activation [PFTNA)
X-ray transmission (XRT) | Atomic density Relative absorption of | Volume Base/precious metals, | Particle Steinert, TOMRA
high energy X-rays coal, diamonds,
sulfides, efc.
Xray fluorescence (XRF) | Elemental Inner shell electron Surface Base/precious metals, | Particle and bulk MineSense, Rados,
spectroscopy composition excitation metal sulfides Steinert, IMA
Laser-induced Visible fluorescence | High-energy photonic | Surface Diamonds, limestone, | Particle and bulk IMA, AIS Sommer
fluorescence under laser emission iron ore, sulfides
(LIF) stimulation
Microwave-infrared Polar bond Microwave absorption, | Volume Base metals, Particle Not applicable
(MW/IR) excitation heat radiation carbonaceous
materials
Laser-induced Elemental Electron excitation/ Surface Base metal oxides, Particle Secopta, LDS, LSA
breakdown composition light emission sulfides
spectroscopy (LIBS)
UV/X-ray luminescence | Photonic emission Luminescence through | Surface Diamonds Particle TOMRA, De Beers
(X-Ray/UV-) from outer shells Xeray or uliraviolet (UY)
stimulation
Photometric Red-green-blue Chromatic reflectance/ | Surface Industrial minerals, Particle Steinert, TOMRA
[RGB color, gray- absorption gemstones, diamonds,
scale, surface coal, massive sulfides,
texture, size/shape phosphates
Hyperspectral analysis | Molecular bonds Reflectance/ Surface Hydrated minerals Particle Steinert
absorption
Electromagnetic (EM) Conductivity/ Electromagnetism/ Volume Base metal sulfides, Particle and bulk TOMRA, Steinert,
magnetic induction native metals, massive MineSense
susceptibility oxides
Magnetic resonance Magnetic resonance | Resonant frequency of | Volume Chalcopyrite Bulk CSIRO

spectroscopy (MRS)

molecules

*AlS Sommer GmbH, Germany; CSIRO (Commonwealth Scientific and Industrial Research Organisation), Canberra, ACT, Australia; De Beers, Johannesburg,
South Africa; IMA Engineering Ltd., Helsinki, Finland; LDS (Laser Distance Spectrometry), Petah Tikra, Israel; LSA Laser Anclytical Systems and Automation GmbH,
Aachen, Germany; MineSense Technologies Ltd., Yancouver, BC, Canada; PANalytical, Almelo, Netherlands; Rados International, Londen, UK; Scantec, Camden

Park, Australia; Secopta, Berlin, Germany; Steinert Global, Walton, KY, USA; ThermoFisher Scientific, Waltham, MA, USA; TOMRA, Shelton, CT, USA.

Hyperspectral Imaging and Reflectance Spectroscopy
Hyperspectral imaging, also known as reflectance spectros-
copy in the visible to shortwave infrared regions of light is a
rapid, nondestructive remote sensing technique that requires
little to no sample preparation. Imaging spectroscopy of geo-
logical materials operates on the premise of absorption of
incident light in the visible to shortwave infrared region by
minerals, whereby diagnostic absorption features are a func-
tion of electronic and vibrational processes specific to that
mineral’s crystal structure and chemistry. Light reflected by
mineral targets is collected by a line-scanning imaging spec-
trometer, producing an image cube where each pixel contains
a reflectance spectrum (Figure 8).

Spectrometers sample at upward of 400 frames per sec-
ond with a spectral range from 400 nm to 2,500 nm and ~3 nm
spectral resolution. Spectra are processed through proprietary
high-speed digital signal processing, pattern recognition, and

identification algorithms, providing information about the
structural nature of certain detectable minerals, especially
clays, carbonates, and OH-bearing minerals. One variation
applies industrial microwave treatment of the rock to enhance
the infrared response of metal-bearing conducting minerals,
which enhances the ability to discriminate from nonconduct-
ing minerals (Van Weert et al. 2011).

X-Ray Techniques

Fluorescence

The composition of minerals can be determined by character-
istic X-rays or fluorescence, generated when atoms are irra-
diated with low levels of X-ray energy. When X-ray energy
strikes a mineral, the atom absorbs X-rays, and electrons
are ejected from the inner shells, creating vacancies. These
vacancies present an unstable condition for the atom, and the
atom returns to its stable condition by transferring electrons
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Figure 7 Optical image acquisition system showing lighting
(top left), CCD camera with integral ring light (bottom leff),
and image-processing computer with display (bottom right)
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Figure 8 Example laboratory reflectance spectra of selected
iron-bearing geological materials from the visible (~400 nm)
to the shortwave infrared (~2,500 nm) light

from the outer shells to the inner shells and, in the process,
emits X-rays of characteristic energy related to the difference
between the binding energies of the corresponding shells. The
X-rays emitted from this process are called X-ray fluores-
cence, or XRF. Emitted X-rays are classified by a spectrom-
eter designed to recognize fluorescence of specific elements
in the periodic table. The technology is effective in detecting
transition metals and some precious metals (Figure 9).
Mineral samples are irradiated by low-power X-ray
energy, and characteristic X-ray backscatter is measured by
the spectrometer. Typical deployments require seconds or

even minutes for effective detection of mineral composition;
in faster approaches, X-ray emissions are sampled more than
60 times per second, with characteristic spectra processed
through proprietary high-speed digital signal processing, pat-
tern recognition, and identification algorithms,

Transmission
XRT techniques similarly deploy X-ray sources, but at much
higher intensities, which are powerful enough to penetrate the
mineral and be captured by an opposing photonic detector
(Figure 10).

The method is versatile, and gives an approximation
of atomic density based on the degree of X-ray absorption.
Principal applications are in coal and fine high-density and
low-density minerals. Application is limited, however, as
results are compromised in the presence of near-density non-
valuable material (e.g., epidote); applications are also limited
by limitations in X-ray penetration to ore minerals typically
up to 38-mm particle size (Figure 11).

Laser-Induced Sensors

Fluorescence

Several minerals that do not naturally fluoresce can be made
to do so under stimulation from coherent light. Typically, a
pulsed laser (e.g., an Nd:YAG [neodymium-doped yttrium-
aluminum-garnet] laser) is used as a source to illuminate the
sample. Fluorescent elements in the sample respond to bom-
bardment by coherent photons and emit fluorescent backscat-
ter, which can be measured again by CCD (Figure 12). The
intensity of fluorescent backscatter is proportional to the con-
centration of the fluorescing element. The technique has been
successfully used in bulk analysis of phosphorus in iron ore
and disseminated base metal sulfides.

Breakdown Spectroscopy

Chemical analysis of minerals is also possible by use of laser
light. A high-powered, short-duration monochromatic laser
beam of approximately 3 GW is used to irradiate the sample
from a distance of between 150 mm and 1,000 mm. The high-
powered laser pulses ionize the atomic structure of the min-
erals. Between pulses, however, the atom begins to reorder
disrupted electron shells, and characteristic breakdown ener-
gies are emitted. Characteristic spectra are passed through
a spectrometer specifically designed for the wavelengths of
interest, delivered to a CCD for digitization, and analyzed in
the embedded computer (Figure 13). Typical deployments of
LIBS are for gases and pure alloys, however, application has
recently been extended to oxides and sulfides of both base and
precious metals. Compact, portable LIBS systems (Fortes and
Laserna 2010) and advances in the development of systems
to analyze rocks (Senesi 2014) enable application to sorting.

Gamma Techniques

Sensing techniques that use gamma radiation are classified as
those that use natural gamma radiation and induced gamma
radiation.

Natural Gamma Radiation

Many minerals contain concentrations of standard, naturally
occurring radioactive elements K, U, and Th. These include
uraninite, pitchblende, and most Witwatersrand gold ores
where the gold is associated with uraninite. These elements
give off a gamma ray of a unique energy when they decay.
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Figure 12 Typical induced fluorescence characterization setup
showing source, subject, detector, and analyzer

Natural gamma emissions from these elements are captured
in a scintillator crystal, which produces a pulse of visible light
whose intensity is proportional to the energy of the gamma
radiation. These pulses are in turn detected by a photomul-
tiplier and converted to electrical pulses whose current is
proportional to the energy of the gamma ray, and the num-
ber of pulses is proportional to the concentration of the emit-
ting element. This is called pulse-height spectrum analysis
(Figure 14).

Figure 11 False color image for ore minerals in X-ray

transmission

Induced Gamma Radiation
PGNAA, pulsed fast thermal neutron activation (PFTNA), and
variants are types of analysis that activate neutrons to measure
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elemental composition. The material is bombarded with neu-
trons that create artificial radioisotopes that decay, emitting
gamma rays characteristic of the element from which they are
emitted; the intensity of gamma rays at a given wavelength
are related to the elemental concentration. For PGNAA, the
gamma rays are measured during irradiation (Figure 15).
PFTNA is similar but uses high kinetic energy (fast) neutrons
to measure gamma rays during irradiation. Both provide bulk
chemical composition and require sensor response periods in
the order of minutes, making the approaches unpractical for
particle sorting but suitable for some bulk sorting applications
when positioned over belts.

Electromagnetic Techniques

Many economic minerals of interest are metallic and therefore
either conductive, magnetic, or paramagnetic. These prop-
erties can be measured using electromagnetic field devices,
which is an established principle in mining exploration as
well as sorting. In principle, passing a current through a coiled
conductor generates an electromagnetic field. In any conduc-
tor, inductance (L) is a measurement of the distribution of
the magnetic field. The magnitude and phase of the current is
determined by the applied voltage and the coil’s impedance
(Z), which in turn controls the characteristics of the time-
varying magnetic field. Impedance is a measure of two fac-
tors: resistance (R) to direct current and reactance (X), where j
is the imaginary unit, and &, w represent frequency. Reactance
is the frequency-dependent opposition to alternating current
and is determined by inductance.

Z=R+jX[Q]

X;=jolL (EQ1)

Time-varying magnetic fields in turn generate time-
varying electric fields. Any object within close proximity to
the coil encounters these time-varying fields. Conductive and
magnetic minerals that are present distort the field and alter the
coil’s electrical properties proportional to the amount of mate-
rial present (Figure 16). Conductive material influences the
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Figure 14 Gamma ray spectral plots for uranium (1.76 MeV)
and thorium (2.62 MeV)

voltage of the current in the conductor (either positive or neg-
ative); magnetic material influences the phase of the current
flowing in the conductor, again either positively or negatively.
A comparator or other bridge circuit measures these changes;
in simple systems, responses above a certain predetermined
threshold indicate detection of conductive or magnetic mate-
rial. In more complex systems, frequency-dependent effects
can be monitored, enabling the capability to determine con-
centration of conductive or magnetic mineral as well.

ORE SORTABILITY

Ore sorting studies are aimed at determining ore sortability
and providing design information for sorting systems. There
are four components to evaluating the feasibility of sensor-
based sorting: ore heterogeneity, sensor response evaluation,
sorting analysis, and feasibility as presented in Figure 17. Ore
heterogeneity is a fundamental property of mineral deposits
and must be assessed independently of the sensor or sorting
method to be used. Sensor response evaluation exposes miner-
als to sensors relevant to the application and confirms the abil-
ity of sensors to detect the property of the minerals in question
and the quality of correlations between the sensor response
and the property (typically ore grade). Sorting analysis
considers—in combination—the levels of grade heterogene-
ity identified and the quality of sensor response to the grade
in order to develop theoretical yield—grade-recovery relation-
ships. Feasibility studies would consider the following: the
commercial availability of a sorting product that can meet the
requirements of the envisaged application, metallurgical per-
formance of the envisaged sorting stage, downstream impacts
on throughput and recovery, and capital and operating costs of
the envisaged circuit.
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Figure 16 Sympathetic fields generated by low concentrations
of conductive or magnetic minerals in rock
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Figure 17 Components of a sortability study

Fundamental Indicators of Sortability in Ores

Ore bodies are complex, highly heterogeneous mixtures of
different lithological units with varying mineralogical compo-
sitions. A key to successful sorting is knowledge of the lithol-
ogy, mineralogy, and quantification of levels of heterogeneity
as the basis for discrimination.

In mining systems, heterogeneity is generally expressed
at the block modeling stage (e.g., 5 x 5-m scale) and is used to
distinguish between ore and waste rock, as well as at the ben-
eficiation stage at size ranges where mineral liberation occurs
(e.g., 100-mm scale). Sorting is applied at length scales inter-
mediate to these two extremes, and it is therefore important to
understand how heterogeneity is expressed between these two
size ranges (Figure 18).

Figure 15 Basic principle of prompt gamma neutron activation analysis

Ore Body Lithology and Mineralogy

Much can be learned about heterogeneity and therefore the
potential for sorting from knowledge of lithologies within
the ore bodies and their mineralogy (Barbanson et al. 2009;
Hitch et al. 2015). Preliminary assessment should include a
review of reports that describe features of the ore body that
would allow sorting (e.g., multiple adjacent lithologies with
different metallurgical response). Descriptions of distinctive
differences between ore and waste rock lithologies and related
mineral associations can provide insights into heterogeneity
as well as into physical and chemical characteristics that can
be exploited as the basis for sensor discrimination.

Early-stage assessment can come from visual observa-
tions of rock or drill core. Providing that samples include
a distribution of valuable and non-valuable constituents, a
qualitative assessment of sortability is possible and can justify
further testing.

When examining the drill core, features that are relevant
to sorting are the size of mineralogical features and contacts
between valuable and non-valuable constituents (Carrasco et
al. 2016). Examination of the drill core, particularly for early-
stage projects, reveals the potential for ore sorting (Bamber
et al. 2006). Figure 19 shows sharp contacts between ore and
waste. It also shows that sections of ore and waste have sig-
nificant extents, which demonstrates heterogeneity over rela-
tively large sections along the core (5-25 c¢cm). Fragmentation
should therefore produce particles that have significant differ-
ences in mineralogical and physical properties that are suf-
ficiently heterogeneous to allow sorting.

Simple visual examination of core samples supports
early-stage assessments of heterogeneity. For example, within
a coarse fraction, such as 5-20 cm, the presence of alternating
barren rock and mineralized rock allows conclusion that the
rock may be sortable providing a sensor can detect the dif-
ferences between them. In cases where heterogeneity is not
visible, scanning with sensors is required to assess this hetero-
geneity and the potential for sorting.

Heterogeneity Analysis in Ores

The nature of the distribution of metal grades between indi-
vidual rocks as well as within and between bulk samples pro-
vides an indication of sortability. A wide distribution of grade
would suggest that there is potential to beneficially separate
at a grade threshold. Conversely, a narrow distribution around
a cutoff would indicate that sorting will be difficult. Two
additional parameters indicate the potential benefit of sort-
ing. Measures of the constitution heterogeneity (CH) indicate
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Figure 18 Schematic of mid-scale heterogeneity ranges
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Figure 19 Drill-core samples showing sharp contact between
lithological rock types and coarse heterogeneity

potential for rock sorting, and measures of the distribution
heterogeneity (DH) indicate potential for bulk sorting.

CH characterizes grade variance of rocks such that a high
CH implies the potential for rejecting a large portion of bar-
ren rock (or alternately recovering a meaningful proportion
of valuable rock). DH (or spatial heterogeneity) indicates
potential for bulk sorting in a similar mode. The grade and
weights of units (rocks or bulk units) allows determination
of the potential grade, mass yield, and recovery relationship.

Constitution Heterogeneity

CH was first introduced by Gy (1992) in his theory of sam-
pling in order to define the uncertainty that is inherent in sam-
pling, represented by the relative, dimensionless variance of
the heterogeneities associated with each fragment F; making
up a lot of Nj; fragments in a sample as shown in the following
equation:

T 2
CH: =N1.~2,-(”‘—a%‘”‘)—.—§3—'% (EQ2)

where CH] is the constitution heterogeneity; o; and «; are the
grades of the fragment i and the lot, respectively; and A, and
M| are the masses of fragment i and the lot.

This definition can be easily extended to the heterogene-
ity of fragments or particles within a lot of particles within
a stockpile, for example, or even fragments within the min-
eral deposit as a whole. By inputting values for the grade of

individual particles in a sample and the average grade of the
sample as a whole, CH can be calculated for any sample. The
CH parameter has elevated relevance with respect to particle
sorting applications. A high CH indicates the potential to
reject or separate a greater proportion of the feed (Mazhary
and Klein 2015).

The particle heterogeneity is most easily evaluated by
measuring the grades of individual particles within a sample,
and plotting the measured grades in two possible ways.

Weight Distribution by Grade

First, the frequency distribution within the grade range
measured (i.e., the weight percent of the sample falling into
specific grade ranges) can be evaluated from the data
(Figure 20).

A general indicator of sortability can be evaluated graphi-
cally in the form of skewness of the distribution (mode # mean).
A normal distribution—0 skewness—indicates low sortability.
Left skewness (mode < mean) suggests a high proportion of
low-grade material in the sample, and therefore potential for
rejection of these fractions. Potential for the recovery of small
quantities of high-grade material is also suggested when view-
ing such a distribution. Right skewness (mode > mean) sug-
gests a high proportion of high-grade material in the sample,
and therefore potential for recovery of these fractions.

Of course, simpler indications of heterogeneity are avail-
able; for example, taking the quotient of the 90th percentile
grade value and the 10th percentile grade value, where for
290/g10 > 20 (where g means grade value), good potential
for sorting is indicated. The identification of any sensor-based
method that can distinguish between the grades of various par-
ticles identified in such an evaluation supports application of
sensors to the sorting of these materials.

Grade Distribution by Particle Size

Second, where the individual particles in the sample were first
separated into size classes before assaying (i.e., size/assay),
the distribution of grade by particle size can be evaluated
(Figure 21).

Again, a general indicator of sortability can be evaluated
graphically in the form of skewness of the distribution (mode
# mean) representing a preferential deportment of grade with
respect to particle size. A uniform distribution indicates no
preferential deportment. A normal distribution indicates pref-
erential deportment to the middlings size class. Left skewness
(mode < mean) suggests higher grades in the fine fractions of
the sample, and therefore potential for recovery of this high-
value material by size classification. Potential for the rejec-
tion of small quantities of low-grade coarse material is also
suggested when viewing such a distribution. Conversely, right
skewness (mode > mean) suggests higher grade in the coarse
fractions of the sample, and therefore potential for the recov-
ery of this high-value material by size classification.

Distribution Heterogeneity

DH is a measure of the heterogeneity of parameters associ-
ated between fragments or lots of fragments at different loca-
tions in the deposit (Equation 3). The definition can be easily
extended to a sample within a set of samples, or one litho-
logical or geometallurgical unit among the set of lithological
units of interest (i.e., different ore zones within a deposit).
Therefore, the DH parameter has elevated relevance to bulk
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sorting applications, although it can further inform applica-
tions in particle sorting as well.

DH = Ng * (Z (a;— ag)* x M?) / (a* x M;?) (EQ 3)

where N, is the number of groups; o; and a; are the grades of
group i and lot, respectively; and M; and M, are the masses of
group i and the lot.

Evaluation of DH is much simpler than for CH. When
considering a set of units, such that a lot represents a set of
units, Gy (1992) refers to the distribution heterogeneity (DH,)
that depends on three factors: (1) the constitution heterogene-
ity (CH,;), (2) the spatial distribution of the constituents, and
(3) the shape of the lot. Lots can vary in scale, ranging from
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Figure 22 Grade-tonnage curve steps indicating zones of
highly differential grade or other characteristics in the deposit

geological units, to blocks within a block model, to shovel
loads, to flows along a conveyor. Initial indications can be
found in the ore body model where characteristic steps in
the grade—tonnage curve of the deposit may suggest signifi-
cant zones of differential grade (or other characteristics), and
therefore potential for classification of these zones by sorting
into streams for custom processing (Figure 22).

Evidence of DH may be much more elementary. For
example, in conventional geological modeling, lithologies
of different geological units are usually well defined. These
lithologies can and do have widely varying ore and gangue
mineralogy, and therefore grade, grindability, and other met-
allurgical characteristics (thus also making them geometal-
lurgical units). In some cases, heterogeneity between these
geometallurgical units can be slight, as in iron ores (Table 2),
or distinct, as in highly weathered volcanogenic massive sul-
fides (VMSs) (Table 3).

Clearly, levels of heterogeneity between the various ore
lithologies within the iron ore deposit and between the ore and
waste lithologies in the deposit are low; however, separation
based on sensor-based characterization may still be possible.

Levels of heterogeneity between the various ore litholo-
gies within the VMS deposit, and between the ore and waste
lithologies in particular are high; therefore separation poten-
tial based on sensor-based characterization is highly indicated
(Bamber et al. 2007).

The identification of any sensor-based method that can
distinguish between the various characteristics of such lith-
ological units supports further evaluation of bulk sorting of
these materials by the techniques described in the following
sections.

Generally, the degree of heterogeneity will increase
with the decreasing size of the unit, as shown in Figure 23.
However, each ore body will exhibit a different heterogene-
ity versus unit size relationship, as indicated by the solid and
dashed lines. The relationship between DH and unit size range
can be estimated from drill-core assay. For example, DH can
be calculated from the grades determined at 1-m intervals,
2-m intervals, 3-m intervals, and so on. This approach allows
DH assessment from the drill core for early-stage projects.

DH generally decreases as a consequence of the mixing
and blending that occurs in material handling (Duffy et al.
2015). Therefore, the greatest heterogeneity and opportunity

Table 2 Low levels of heterogeneity between units in an iron ore
deposit

Sumple Fe, % 5i02, % Algo;;, %
Description Minimum  Minimum Maximum  Minimum Maximum
High-grade 52 0 5.5 0 2.5

upper channel
iron deposit (CID)

Upper CID 52 55 11 0 2.5
High-grade 53.5 0 8 0 3
detrital

Detrital waste 12 NA* NA NA NA
Blendable 52 55 11 0 2.5
upper CID

Middle CID 52 6.5 13 0 2
High-grade 52 0 6 0 3
bedded

*NA = not applicable.
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for bulk sorting is close to the face. CH is affected by mixing,
but to a lesser extent.

Test Programs

Three aspects must be considered when developing test pro-
grams. First, if amenability test work is preliminary, the tests
should be as nondestructive as possible to preserve as much
sample as possible for further testing, whether for more scan-
ning or for downstream test work (e.g., grindability or flota-
tion response).

Second, the choice of assay method is critical. Often, if
samples are from an operation, the mine will suggest or rec-
ommend a specific or custom assay procedure. If working a
greenfield project, or if no guidance is available, the assay
lab should be consulted beforehand for recommendations as
to the appropriate assay procedure for the ore type in ques-
tion. Inductively coupled plasma (I1CP) whole-rock methods
are generally suitable for metal sulfides. Specific digestion
methods, however, are recommended for Cu porphyries, and
multielement X-ray fluorescence (ME-XRF) methods are
recommended for oxides such as ferric oxide (Fe,05) or Ni
laterites.

Third, the criticality of developing good sensor—assay
correlations must be considered. In rare cases, sensor cor-
relations are simple linear functions with high correlation,
therefore fewer assays are required to develop a fit. In this
case, hand selection of 60-80 specimens from across the grade
range (a visual assessment of mineralization may be required)
is sufficient to develop the correlation. In most cases, cor-
relations will be more complex requiring cubic functions or
multivariate regression, and more assays will be required to
develop a good fit. In equally rare cases, no sensor correlation
may be apparent from the data, and CH must be judged solely
from the underlying assay data. It is, therefore, possible that
the entire 500-particle sample set must be assayed. In such
cases, the testing is completely destructive, and any rescan-
ning must be done on a separately procured sample.

Sampling and Sample Preparation
Effective sampling is key in assessing the amenability of ores
to sorting. A quick referral to Gy (1992) or Pitard (1993) will
reveal that representative sampling at the typical particle size
distributions and metal grades in question suggests represen-
tative sample sizes in the hundreds of kilograms for high-
grade fine samples and thousands of kilograms for low-grade
coarse samples. As truly representative sampling is generally
unfeasible in this domain, the aim of sampling and test work
should be to obtain indicative results from as representative
a sample as possible. While geometallurgical approaches can
be adopted to include many smaller samples from across the
deposit to maximize representivity, the individual samples
obtained in this mode are by necessity small and therefore
may not be optimal in the assessment of sorting parameters.
The fundamental considerations that are applied to sam-
ple selection for conventional metallurgical studies are rel-
evant as presented in Chapter 1.8, “Sampling Practice and
Considerations.” However, considering the constraints of
practical sample size and to ensure the capture of as many rel-
evant features of interest as possible, custom, guided sampling
is recommended. Sample bias also needs to be avoided. This
can arise from three approaches to sampling:

Table 3 High levels of heterogeneity between units in a
polymetallic VMS deposit

Assay
Unit Au, g/t Ag, g/t Pb, % In, %
Waste <1 <50 <3 <2
Oxide <] 200 3 2.5
Inner Pefiasco breccia 30 500 4 7
Azul breccia 4 300 3.5 7
Sediments 15 500 4 10
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Figure 23 Heterogeneity versus unit size for two different
ores represented by solid and dashed lines

1. Preferential exclusion of fines in sampling (fines can be
high grade)

2. Preferential exclusion of oversize particles in sampling
(oversize particles are difficult to handle)

3. Preferential samplers to prejudge “good” material (bias
toward high grade) or “waste” material (bias toward low
grade)

Following are three suggested sampling approaches,
which are relevant to new (exploration) projects and to surface
and underground operations, respectively.

Exploration projects. Where sorting is being evaluated
for a new project, and often in underground projects, core sam-
ples are the only source of material for testing. In this case, it
is not only essential to ensure that samples of every relevant
ore type plus waste are sampled but also that a full intersec-
tion of ore (i.e., an intersection containing hanging wall, ore
zone, and footwall material) is taken. Half-core is generally
available and optimal for testing. Quarter-core tends to be too
fine at the outset and also tends to break up further during
scanning, which is suboptimal. Often, samples provided by
geologists or metallurgists for sorting test work are foo good
in that they are too high grade and do not contain relevant
quantities of gangue material. Also, diluting rich samples with
waste will not give meaningful results compared to testing vir-
gin samples of similar grade.

Open pit mines. Sampling for sorting test work in open
pits 1s most easily achieved by taking samples directly from
the bench or benches in question. Ideally, at least one sample
per ore type plus one sample of waste (either overburden or
basement material) is recommended. Samples should be full
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Source: Bamber 2008
Figure 24 Classification of samples into size fractions for
testing

fraction: To be useful, they should contain the largest feasible
particle size as well as a representative measure of fines. In
open pits, large run-of-mine (ROM) particle size distributions
often prohibit the practical collection of samples, and there-
fore coarse crushing of samples is often necessary. Optimal
samples are taken in either 1- or 2-t bulk bags or if absolutely
necessary, 210-L. drums (approximately 300 kg each). Belt
cuts from overland conveyors post in-pit crushing or from
the semiautogenous grinding (SAG) mill feed are admissible.
Because this type of sample often cannot be traced back to any
particular block in the ore-body model, it must be taken under
advisement.

Underground mines. Sampling in underground mines is
ideally done by sample collection directly from the blasted
muck pile in the stopes. Again, one sample per major ore type,
plus a sample of waste material as a control, is recommended.
Samples can be taken as subsamples of the contents of scoop
buckets or manually by hand shovel from the muck pile. Care
should be taken to capture both coarse and fine fractions of
the sample to ensure maximum representivity and avoid bias
as previously described. In the underground context, samples
from ore passes and waste passes are also considered valid,
as are belt cuts from underground conveyors where the con-
tent of the belt can be traced back to a particular heading or
section.

Sample Preparation

Samples are ideally weighed and either wet or dry screened into
at least three size fractions (+75 mm, —75+25 mm, and 25 mm)
although more fractions can be contemplated. Figure 24 shows
multiple size fractions: +125 mm, —125+75 mm, —75+53 mm,
—53+38 mm, —38+25 mm, -25+13 mm, —13+9 mm, —9+6 mm,
—6+3 mm, -3 mm. To deliver clean, fines-free particles for
scanning test work, wet screening is preferred; however, dry
screening may be used to more closely simulate the condition
of particles in a field situation.

Classification into particular size fractions in this way
supports assessment of any characteristics of preferential
grade deportment by size. Characterization classification of
material also supports complementary characterization, such
as assessment of the liberation index at the various particle
sizes and observation of preferential breakage (i.e., breakage
along grain boundaries or contact lines), which might influ-
ence presentation of the valuable minerals to the sensor.

Sensor response evaluation. Samples scanning is done
to achieve two objectives: (1) to measure the true heterogene-
ity of the particles in a sample and (2) to generate data for the
correlation of sensor responses to the grade of mineralization
in the sample. An additional objective that can be achieved in
scanning is to screen into an appropriate number of size classes
a priori as previously described, and scan each size class sepa-
rately. To select a method for scanning, Table 1 should be con-
sulted with consideration of the property of interest.

Rocks (or batches of rocks representing a particu-
lar lithology) prepared for analysis are then scanned by the
selected sensor. Sensor responses are recorded for individual
rocks or the batch sample to determine the sensor response
distribution with respect to the heterogencous property.
Sensor response distribution is then correlated to the property
described by independent assay of the property (i.e., grade).
The results indicate the potential for a specific sensor to clas-
sify rock according to value. For example, a narrow sensor
response distribution close to a threshold grade along with a
low CH indicates a low potential for the sensor to classify
the material. Conversely, the opposite would indicate a high
potential for sensor classification. Similarly, evaluation of
sensor response for bulk samples with consideration of the
DH parameter would show the potential of the sensor in a bulk
sorting application.

Experimental programs are carried out to determine which
sensors are capable of sensing ore and waste qualities within
each lithological unit in an ore body. Table | lists sensors that
could be considered as part of an evaluation of sensor-based
sorting. Once the sensor responses are mapped against indi-
vidual rock types, a sorting strategy and system that applies
to selected sensors can be investigated and developed further.

Often, scanning using multiple types of sensors simulta-
neously (e.g., electromagnetic, photometric, and XRF) is rec-
ommended, depending on the expected range of properties that
may be exploited. In scanning for characterization purposes,
all particles in a given size class should be scanned multiple
times. At least four scans per particle (one scan per face) is
recommended, typically turning the particle 90° between each
scan. A greater number of scans per particle is possible, even
advisable, in the case of coarse particles (e.g., >125 mm).

Fines <25 mm (in the case of ROM samples) and <13.8 mm
(in the case of primary crusher underflow) would generally not
be scanned, as these are considered too fine, practically, for par-
ticle sorting at scale. For low-tonnage and fine-particle applica-
tions, evaluation can be done at these particle sizes if desired.
When scanning core, each core piece should be scanned as
a single sample; multiple scans (four or six) would again be
required for core pieces >100-mm long. Core pieces <25-mm
long would generally be considered fines and not scanned. If
the sample particle size distribution is relatively fine, a practical
limit of 500 particles scanned per size class is suggested. Scan
data from the various modes of sensor for each size class should
be logged together with a sample number and, ideally, the sam-
ple mass in a database for later retrieval and analysis (Table 4).

Sorting analysis requires the assessment of the grade
and metal distribution in the unit (e.g., by CH and DH met-
rics previously described) and the development of algorithms
that correlate generated sensor responses to variations in grade.
Correlations are demonstrated using sensor calibration curves
that relate the grades of rocks as determined by whole-rock assay
to sensor-predicted responses. Figure 25 shows an example plot
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Table 4 Typical data from a sensor amenability test program

Sample No. Date Weight Peak 1 Peak 2 Peak 3 Peak 4 Fe Cu Pb In
1 2015-11-24 191 270 20 1,650 20 27.0 2.0 16.5 <1
2 2015-11-25 100 300 30 3,900 20 30.0 3.0 39.0 <1
3 2015-11-26 78 100 40 1,599 20 10.0 4.0 16.0 <1
4 20151127 140 120 10 1,299 20 12.0 1.0 13.0 <1
5 2015-11-28 200 400 30 699 20 40.0 3.0 7.0 <1
6 2015-11-29 156 500 20 679 20 50.0 2.0 6.8 <1
7 2015-11-30 130 270 30 400 20 27.0 3.0 4.0 <1
8 2015-12-01 99 300 40 399 20 30.0 4.0 4.0 <1
9 2015-12:02 238 100 10 700 20 10.0 1.0 7.0 <1

10 2015-12-03 340 120 30 200 20 12.0 3.0 2.0 <l
11 2015-12-04 67 400 20 345 20 40.0 2.0 3.5 <1
12 2015-12-05 180 500 30 899 20 50.0 3.0 9.0 <1
13 2015-12-06 200 300 40 1,237 20 30.0 4.0 12.4 <1

of assayed grades for Pb and Zn against XRF sensor responses
for those elements showing good correlation (Tong et al. 2015).
It can be concluded from the high correlation that this lead-
zinc ore is amenable to sorting by XRF. Correlations may be
simple y = mx + ¢ relationships; more complex quadratic or
cubic functions; or may require more sophisticated methods,
such as multivariate regression analysis to generate a usable
correlation. Calibrated sensor responses thus developed can
then be used to develop grade, mass yield, and metal recovery
relationships discussed in more detail in the following section.

Sortability Analysis

The ability to sort materials is based on the ability to corre-
late elemental/metal grades to sensor responses with consid-
eration of mineralogical properties of the ore and waste. Most
commonly, a single sensor response is correlated to a metal
grade. Correlations can be improved by application of several
approaches, including

« Combining sensor responses to improve accuracy,

» Analyzing proxies for target metals or minerals (multi-
variable regression),

» Assessing heterogeneity of gangue phases for rock rejec-
tion (e.g., detecting the waste for rejection),

» Applying piece-wise regression to focus models to
selected grade ranges, and

« Assessing rock size heterogeneity to determine optimum
size ranges for sorting.

Test data from sensor studies are used to evaluate each of
the approaches to determine potential metal recoveries, prod-
uct grades, and mass rejections for a range of thresholds. The
results can also be used to test the developed algorithms to
indicate separation efficiency by determining the proportion
of potentially misplaced rocks or bulk material. Algorithms
that can be correlated to mineralogical, physical, or geochemi-
cal properties are considered more robust than those that are
completely empirical. The assay data are required to provide a
calibrating data set against which to correlate the average scan
result for each particle to first determine the heterogeneity and
second, the degree of correlation between sensor response and
the elemental (or mineralogical) composition of the sample.

Heterogeneity and Frequency Distributions
From either the full sample assay data or from calibrated scan
data for the sample, a grade distribution can be developed by

taking the frequency of occurrence of either grades (in the case
of assay data) or magnitudes of sensor response (in the case
of scan data) within bins of grade or magnitude of response
and plotting their relative frequency. Factoring the frequency
of occurrence by the mass of particles falling within each bin
will give the distribution of sample weight percent in each
grade or response interval (Figure 26).

From such results, CH can be calculated using Equation 2.
For multiple results across several ore types from the same
deposit, DH or spatial heterogeneity (Equation 3) can also be
calculated.

Size-Grade Distribution

The size-by-grade distribution can be used to identify the
potential for size classification as a means of sorting. The
relationship between particle size—grade and metal distribu-
tion supports targeting of size classes for sensor-based sorting.
Size analysis and assays are shown in Table 5 and are plotted
in Figures 27 and 28.

The data clearly suggest that the —75+53-mm and
—53+37.5-mm fractions are preferentially carrying the Pb
and Zn value. The benefit of recovering by size classification
should then be investigated further.

v = 0.6813x + 0.6939

254 y@, = 1.7577x - 0.0893
R? = 0.9707

T T
0 10 20 30 40 50
XRF Analyzer Reading, %

Source: Tong et al. 2015
Figure 25 Correlations between X-ray fluorescence analyzer
reading and particle assay
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Figure 26 Frequency (wt %) distribution by grade interval in a Cu-porphyry sample
Table 5 Head sample size analysis and assays
Size Fraction Weight Cumulative Weight, % Grade, % Distribution, %
mm in. Distribution, % Retained Passing Pb In Pb In
+75 +3 24.5 24.5 7855 2.84 5.58 16.9 14.2
-75+53 -3+2.12 44.9 69.3 307 4.66 11.80 50.9 55.1
-53437.5 —2.1241.5 14.2 83.6 16.4 5.85 9.97 20.2 147
-37.5+26.5 -1.5+1.06 6.3 89.9 10.1 3.65 9.52 5.6 6.3
-26.5+19 -1.06+0.75 2 92.0 8.0 1.49 12.80 0.8 2.8
~19+13.2 —0.75+0.5 2.0 94.0 6.0 2.23 7.78 1.0 1.6
-13.2 -0.5 6.0 100.0 0.0 3.10 8.61 4.5 53
Total 100.0 4.1 9.63 100.0 100.0
T Grade-Recovery Curves
> P Theoretical grade—recovery curves for the sorting of the tested
i azn sample can be generated from the frequency distribution data.
g Selective exclusion of the sample mass mathematically by
= & grade, from low to high (or high to low) will generate a theo-
4 retical grade-recovery curve for the separation of the sample.
9 Grade-recovery curves can be generated for the ideal case
0 based on the geochemical assay data set, or as derived from
A5 & '1;\?5\ g A B e calibrated sensor responses.
= I 45" B o X Relative amenability to sorting can be assessed by exam-
% v X ¥ ining the yield—grade-recovery characteristics indicated by
Size Class, mm the curve in question (Figures 29 and 30).
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Figure 28 Weight, Pb, and Zn distributions

As can be seen, the ideal grade—recovery for the sample
with highest CH value is the best; however, even for CH = 4,
grade—recovery response may, subject to economic factors,
still result in a beneficial outcome in sorting.

Finally, comparison of the ideal grade-recovery rela-
tionship as determined by heterogeneity of the sample to
the grade—recovery relationship as determined by the sensor
method will give an indication of expected performance of the
selected sensor in classifying the material according to grade.
Figure 31 shows the grade—recovery relationship for Cu, using
XREF. It is based on regression models of Cu, Fe, As, and Mo
peaks, where Cali-CuFe is calibrated to XRF Cu and Fe, and
Cali-CuFeAsMo is calibrated to XRF Cu, Fe, As, and Mo. The
figure shows that the regression model based on Cu and Fe
alone does not fit the ideal as well as the model based on Cu,
Fe, As, and Mo. These elements likely occur in minerals asso-
ciated with the Cu mineralization.
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SELECTION DATA FOR SORTING SYSTEMS

AND CONSIDERATIONS FOR CIRCUIT DESIGN
Selection of an appropriate sorting system is governed by sev-
eral factors (Klein et al. 2003, 2010). Mineral type, mine type,
and application location are primary factors. Mineral type
governs both heterogeneity parameters as well as the type of
sensor to be deployed. Mine type largely governs the expected
feed particle size distribution and capacity required of the cir-
cuit. Application location (e.g., in-pit or underground, pre-mill
or within the SAG circuit) similarly governs the expected feed
particle size distribution and capacity required of the circuit,
as well as placing constraints on the type of sorting system
(bulk or batch, semi-bulk or particle) that can be deployed.
A final consideration is the optimal or desired yield—grade—
recovery of the circuit, where the selectivity of bulk or batch
systems, for example, may not allow grade or yield require-
ments to be met. Alternately, particle sorting systems may
not meet capacity (or capacity and cost) requirements. Yield—
grade-recovery requirements will also govern the selection
and number of stages where delivering a final sorting product

locations can be in-pit (crush/convey) or pre-mill. For particle
systems, locations are typically pre-mill or possibly applied
to treat the pebble stream of the SAG mill circuit. Alternate
deployments of both bulk and particle systems can be on the
waste dumps of active or inactive mines.

Indicative Particle Sorting Parameters

Particle sorting is generally used for waste rejection ahead
of the mill. Mass yield to concentrate can vary from 40% to
80% (20%—60% waste rejection). Recovery to concentrate can
vary from 60% for high weight percent rejected, to 99% for
low weight percent rejected, or in the case of waste rejection
from unusually well-liberated ores. Table 8 presents a range of
achievable particle sorting results based on the literature. The
reader is reminded that as sortability is more a function of ore
characteristics than machine characteristics, results presented
here should be viewed not as representative of the particular
technology described, but of the ore treated.

Indicative Bulk Sorting Parameters

Bulk sorting is typically applied further upstream than particle
sorting, often as a pretreatment step ahead of other sorting
stages, or ahead of flotation or leach processes. Selectivity in
bulk sorting is inherently lower, therefore is typically applied
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in either cleaner (removing residual waste from ore mate-
rial) or scavenger (recovering residual ore from waste mate-
rial) applications. Mass yield to concentrate typically varies
from 85% to 95% (5%—15% waste rejection), although higher
rejection rates are possible when entire lithologies must be
rejected to waste. It is important to keep in mind that the main
value of bulk sorting, particularly shovel-based systems, lies
in the ability to recover ore that would otherwise have been
left in situ or lost to the waste dump. Recovery rates for ore
in waste can be similarly 5%—15%, where ideally, the rate of
ore recovery is used to balance the rate of waste rejection to
optimize grade and throughput of feed to the mill (or leach).
Parameters for bulk sorting often match parameters used in
grade control and material routing, as this type of solution is

Table 6 Sorting system selection criteria

most often deployed in support of those processes at a mine.
Two examples of bulk sorting are given in Tables 9 and 10.
Available sorting options are generally traded off against
the option of not sorting at all, although several other trade-
offs can be considered. In situations where particle sorting is
being considered, this option often competes with other coarse
gangue-rejection technologies, such as jigging or dense media
separation, which can be used in a similar duty with similar
effects, or against more selective mining methods where these
are possible. A key trade-off is the decision between particle
sorting (with higher selectivity and yield-recovery parame-
ters but limited capacity and higher unit capital expenditure
[CAPEX] to operational expenditure [OPEX] ratio) and bulk
sorting (with lower selectivity and yield—recovery parameters

Type Particle Size Distribution Range Lot Size Range, kg Capacity, t/h
Fine-particle sorting 4-10 and 10-20 mm 0-0.05 0-40
Coarse-parficle sorting 20-80 and 80-300 mm 0.05-6 20-300
Semi-bulk belt sorting 0-300 mm 10-100 100-1,500
Bulk belt sorting 0-600 mm 100-10,000 500-10,000
Bulk sorting shovel Run-of-mine 10,000-50,000 500-10,000
Bulk sorting truck Run-of-mine 100,000-300,000 500-10,000
Table 7 Particle sorting system typical selection criteria

Particle Size Distribution
Type Belt Width, mm Belt Speed, m/s Range, mm Capacity, t/h
Ultrafine 600 2.8 0-4 0-10
Fine 600-1,000 2.8-6 4-20 10-60
Standard 1,000-2,000 2.8-6 10-200 20-150
Coarse 2,000-3,000 2.8-6 20-300 40-300

Courtesy of Liitke von Ketelhodt
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Figure 32 Shovel and truck sorting of bulk commodities (e.g., Cu 100,000 t/d)
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Figure 34 Combination of bulk and particle sorting of Pb-Zn ore (10,000 t/d)

but order of magnitude higher capacity and lower CAPEX to
OPEX). In high-capacity (~10,000 t/h) situations, bulk sort-
ing is often the only option. Then, where contemplated, bulk
sorting is often traded off against basic capital expansion (pit
pushback or plant expansion) options, and commonly against

more intensive or sophisticated grade control and material
routing strategies. Options are generally constrained by the
fundamental degree of heterogeneity in the ore body, the
length scale at which this occurs, and the capacity required of
the ore recovery or waste rejection solution.
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Figure 35 Combination design including size classification, coarse and fine-particle sorting for an underground Ni mine

(3,000 t/d)

Table 8 Selected published sorting results

Preconcentration Method Ore Type Feed Size, mm Reject, wt % Metal Recovery  Reference
Model 19 optical Pb-Zn 150 26.3 94 Collins and Bonney 1995
Model & radiometric U3Og 150 39 96.5
Magnetic Ni 100 40 96.7
Radiometric AuU;04 50 50 98 Sivamohan and Forrsberg 1991
Conductivity Ni-Cu 25 80 80
Conductivity Ni-Cu 100 60 90
Conductivity Ni-Cu 70 27.83 82
Medel 16 optical Cu 100 327 96
Screening Cu 100 20 99
Optical Au 100 44.8 94.8 Wilkinson 1985
Conductivity sorting Au 100 54 80.5
Optical plus conductivity Au 100 50.2 97.8
Radiometric Wits Au 250 44.1 87.9 Kowaleyk 2011
Radiometric Wits Au 250 29.5 92.6
Comminution/screening Cu-Platinum group 75 37 9 Bamber 2008
elements
Comminution/screening Cu porphyry 31.75 54,37 7875 Burns and Grimes 1986

Adapted from Bamber 2008
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Table 9 In-pit ore recovery/waste rejection at a large-scale
open pit Cu mine

Table 10 Ore recovery from Ni-Cu mine waste dump

Distribution/

Mill Leach Waste Grade Feed, % Product, % Tails, %

Base Case Weight % 100 33 68

Yield, t 95,000 63,000 160,000 Ni Grade % 0.67 1.57 0.28

Grade, %Cu 0.48 0.35 0.19 Ni Weight % 100 76 24

Bulk Sorfing Products Fe Grade % 16.55 18.39 9.04

Yield, t 23,750 0 25,600 Fe Weight % 100 40 60

Grade, %Cu 0.22 0 0.55

Combioad Table 11 Indicative throughputs, capital expenditure (CAPEX),

Yield, t 96,850 63,000 158,150 and operational expenditure (OPEX) of particle sorters (in US$)

Grade, %Cu 0.56 0.35 0.14 Top size, mm 25 50 100 200
Throughput, t/h 35 60 120 250

Capital Costs, Operating Costs, and Economic Analysis CAPEX Sorteronly $1,312,500 $1,579,000 $1,875,000 $2,025,000

In cases where good sorting potential exists, sorting, whether OPEX Sorter $0.33 $0.22 $0.10 $0.08

by particle or in bulk, is generally more attractive from a Ancillaries  $0.50 $0.25 $0.12 $0.09

capital cost point of view than competing alternatives. Bulk
sorting, whether shovel, truck, or belt, is attractive from an
operating cost perspective. Minimal capital investments are
required, particularly for instrumenting existing mobile equip-
ment, such as shovels and trucks, making these options attrac-
tive from a cost point of view versus alternatives delivering
similar value. Nield (2002) reports four truck scanners gener-
ating a value of between US$120,000 and $160,000 per month
with payback “in months.” For belt installations, CAPEX on
new conveyors may be required, however, these are again
relatively low capacity per cost compared to alternatives and
therefore quite feasible. Based on several case studies, typical
payback on belt applications, where feasible, varies between
three and six months (Kurth 2015; Hilscher 2016).

Selection of particle sorting, however, does incur capacity
and cost issues. as applications are inherently limited to low
throughputs and where scaling this option to higher through-
put requires increasing numbers of machines and therefore cir-
cuit complexity, which must be taken into account (Arvidson
2002; McCarthy 2014). For particle sorting installations, pre-
treatment as well as product handling circuits are required,
which can significantly add to the overall capital cost.

Particle sorting also embodies higher operating costs than
bulk sorting. This is particularly true in the case of larger mod-
els of conventional sorters deploying compressed air pulses as
the method of particle diversion. While the sorter itself may be
operated at relatively low cost, compressed air generation sig-
nificantly adds to the capital and operating cost of the circuit.
Despite this, particle sorting does find application in lower
throughput, higher value situations.

Indicative capacities for typical particle sorting instal-
lations, together with indicative capital and operating costs
are presented in Table 11. Figure 36 presents some order-of-
magnitude operating cost guidelines for particle sorting cir-
cuits to further aid in selection.

Barton and Peverett (1980) quote US$1,450,130 initial
cost and US$0.28/t operating for a 90-t/h ore sorter model 19
installation at Driefontein gold mine in South Africa. More
recently, Rule et al. (2015) reported overall capital costs of
US$5 million for a 30-t/h pilot XRF installation, and up to
USS$100 million capital overall for a 1,000-t/h production
facility. Operating costs at 1,000 t/h were estimated at between
US$0.20/t and $0.30/t. Nevertheless, even with higher unit
capital and unit operating cost requirements, typical reported

Courtesy of Matthew Kowaleyk
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Figure 36 Relationship between throughput, particle size,
and operating cost

payback for particle sorting projects, where ore is amenable,
vary from one to two years (Hilscher 2016).

Installation, Operating, and Maintenance Considerations

Shovel- and truck-based systems require little overhead in
the way of installation, although Nield (2002) describes a
requirement for this type of system to be integrated with the
mine’s grade control and ore routing systems for maximum
effectiveness. Bulk systems, whether shovel, truck, or belt,
require little in the way of feed preparation, although bulk
belt sorting systems do require additional material handling
for reject streams that are created. Particle sorting systems
require a higher standard of feed preparation, both in terms of
crushing and screening the feed within the particle size ranges
previously described (3:1 top size to bottom size) as well as in
terms of removing adhering fines, for example, by wet screen-
ing for better analysis of the particles to be sorted, particu-
larly with use of surface sensing methods. Strict specifications
relating to presentation of the feed to particle sorters (mono-
layer of particles, controlled velocity, particles preferably not
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Figure 37 Provisions for impact and/or abrasion resistance
in feed and discharge areas are important in primary
applications

touching) also need to be observed in circuit design where not
catered for by the vendor. Additionally, particle sorting solu-
tions often implicate multiple units in parallel because of their
low unit capacity, therefore the feed preparation circuit, the
sorting plant itself, as well as the product handling circuit can
be complex and require careful design.

In operations, several considerations pertain. Maintaining
calibration of the sensors to grade is key, where either step
changes in calibration or drift over time can occur; calibration
should be regularly monitored and corrected. Changes in the
feed material type over time should also be tracked, particu-
larly where feed transitions to a type not previously charac-
terized for sorting; thus recharacterization by the procedures
described would then be required to maintain system perfor-
mance. Barton and Peverett (1980) note fragmentation of the
feed on entering the sorter (as this is typically done at high
velocity and can be an area of high impact) can affect system
performance. Variations in temperature and humidity of the
environment, as well as excess moisture content in the feed
itself, should also be monitored and, if required, controlled.

Several maintenance considerations should also be noted.
Damage to sensors by direct impact of rocks or other envi-
ronmental factors relating to the aggressive mine environment
should be monitored. Sensor and sorter systems should always
be designed to fail-safe, that is, to default to normal operation
on breakdown as well as cause no direct hazard during failure.
Barton and Peverett (1980) note the potential wear in feed and
discharge chutes, as these are areas of high impact abrasion
as well as potential damage to sorter belts by rocks, as these
are often not mining-rated belts (Figure 37). Blockages to air
valves in air-actuated machines have been noted, as well as
wear and actuator failure on mechanically diverted systems.

Recently Reported Sorting Installations

Hilscher (2016) lists several recent sorting examples, their
location, application, and technology. Russia, Australia, and
South Africa appear as leading practitioners, with Europe
and the Americas currently lagging in adoption (Table 12).
Figure 38 shows an example of an XRF sorting plant at a
South African platinum mine.

Table 12 Recent ore sorting installations and the technology
applied

Year Country Segment Application Type

2000 Russia Gold Ore preconcentration  X-ray
fluorescence
(XRF)

2000 Russia Gold Waste rock removal ~ XRF

2001 Kazakhstan Manganiferous Ore preconcentration  XRF

2001 Russia Gold Ore preconcentration  XRF

2001 Russia Lead/zinc Ore preconcentration  XRF

2002 South Africa Platinum Waste rock removal ~ Color

2003 Russia Copper/zinc  Ore preconcentration  XRF

2003 Brozil Aluminum Not available Color

2003 Russia Nickel Ore preconcentration  XRF

2004 Russia Nickel Ore preconcentration  XRF

2005 Australia Nickel Waste rock removal  Eleciromagnetic
(EM)

2005 Russia Copper/zinc  Ore preconcentration  XRF

2006 Kazakhstan Chromite Ore preconcentration  XRF

2006 Russia Copper/zinc ~ Ore preconcentration  XRF

2006 Russia Uranium Ore preconceniration  XRF

2007  Australia Nickel Waste rock removal ~ EM

2007  Austria Tungsten Waste rock removal  Xeray
transmission
(XR)

2007  Russia Gold Ore preconcentration  XRF

2007 Russia Fluorite Ore preconceniration  XRF

2010 South Africa Gold
2010 United States Gold

Waste rock removal  Color

Waste recovery EM

2010 Canada Nickel Waste rock removal  EM
2011 Australia Gold Woaste rock removal XRT/laser
2011 Australia Gold Waste rock removal Color/laser

2011 Australia Gold
2011 Russia Gold
2011 Russia Magnesite
2011 United States Copper
2011 Australia Tungsten
2012 South Africa Platinum
2012 Australia
2012 South Africa Manganiferous Waste recovery EM
2012 Austria Tungsten
2013 South Korea Tungsten

Waste rock removal  Ultraviolet/laser

Waste rock removal ~ XRT

Ore preconceniration  EM

Waste rock removal Mot available

Ore preconcentration  XRT

Ore preconcentration  XRF

Tungsten Ore preconcentration  XRF

Waste rock removal ~ XRT

Waste rock removal ~ XRT

2013 Russia Gold Waste recovery Laser
2013 China Gold Waste rock removal ~ XRT
2014 Russia Magnesite Ore preconcentration  XRF
2014 Namibia Gold Ore preconcentration  XRF
2014 Australia Copper Preconcentration XRF
2014  Australia Copper Ore preconcentration  XRF

2015  United States Gold
Adapted from Hilscher 2016

Waste rock removal ~ XRT

Table 12 demonstrates an extensive range of ores
where the technology is now proven, including manganese,
lead-zinc, chromite, aluminum, and platinum, in addition to
traditional applications in nickel, copper, gold, and diamonds.
New applications, such as with rare earth elements, lithium,
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Source: Rule 2012
Figure 38 X-ray fluorescence (XRF)-based platinum sorting
plant

molybdenum, and phosphates, are constantly in development.
As can also be seen from the table, the pace of implemen-
tation has recently accelerated on the back of improvements
in capacity and applicability of the technology, as well as an
increased understanding by industry practitioners in how to
apply sorting to the benefit of selected operations.
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